Electronic heat generation in semiconductors: Non-equilibrium excitation and evolution of zone-edge phonons via electron-phonon scattering in photo-excited germanium

APPLIED PHYSICS LETTERS(2023)

引用 1|浏览8
暂无评分
摘要
We investigate experimentally and using first-principles theory the generation of phonons and the relaxation of carriers on picosecond timescales across the Brillouin zone of photo-excited Ge by inter-valley electron-phonon scattering. The phonons generated are typical of those generated in semiconductor devices, contributing to the accumulation of heat within the material. We simulate the time-evolution of phonon populations, based on first-principles band structure and electron-phonon and phonon-phonon matrix elements, and compare them to data from time-resolved x-ray diffuse scattering experiments, performed at the Linac Coherent Light Source x-ray free-electron laser facility, following photo-excitation by a 50 fs near-infrared optical pulse. We show that the intensity of the non-thermal x-ray diffuse scattering signal, which is observed to grow substantially near the L-point of the Brillouin zone over 3-5 ps, is due to phonons generated by scattering of carriers between the & UDelta; and L valleys. These phonons have low group velocities, resulting in a heat bottleneck. With the inclusion of phonon decay through 3-phonon processes, the simulations also account for other non-thermal features observed in the x-ray diffuse scattering intensity, which are due to anharmonic phonon-phonon scattering of the phonons initially generated by electron-phonon scattering. (c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/).
更多
查看译文
关键词
electronic heat generation,semiconductors,phonons,non-equilibrium,zone-edge,photo-excited
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要