Effects of various COD/NO ratios on NOx removal performance and microbial communities in a BTF-ABR integrated system.

Chemosphere(2023)

引用 1|浏览16
暂无评分
摘要
In this study, we investigated the removal performance of NOx and stability of the biotrickling filter-anaerobic baffled reactor (BTF-ABR) integrated system at various chemical oxygen demand (COD)/NO ratios (12.18, 6.71, and 4.63 in stages 1, 2, and 3, respectively) under 3.5% O2 and 50 ± 0.5 °C conditions for the first time. The results showed that the maximum elimination capacity of NOx was 4.46, 8.16, and 11.58 g/(m3·h) in stages 1, 2, and 3, respectively. The minimum operating cost in terms of glucose was 4.79 g of glucose/g of NO. However, a COD/NO ratio of 12.18 resulted in a wastage of carbon sources, while a COD/NO ratio of 4.63 led to about 20 mg/m3 N2O emission at the end of the study. Highly bacteria diversity and positive co-occurrence networks at the COD/NO ratio of 6.71 were the main reasons for no intermediate accumulation or N2O emission. Analysis of real-time polymerase chain reaction (PCR) indicated that nirS and norB were more sensitive to the changes in the COD/NO ratios than other denitrifying genes, and the denitrifiers with nirS filled more ecological niches as the NOx increased. Furthermore, although the decrease in COD/NO ratio significantly impacted the microbial community structure, the NOx RE was stabilized at over 90% because the micro-aerobic environment produced by ABR combined highly diverse microbes and functions in BTF, as well as the coordinated expression of denitrifying genes. Achieving efficient, stable, and low-cost denitrification is feasible in this BTF-ABR integrated system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要