Hydroxyapatite Growth on Activated Carbon Surface for Methylene Blue Adsorption: Effect of Oxidation Time and CaSiO3 Addition on Hydrothermal Incubation

APPLIED SCIENCES-BASEL(2023)

引用 1|浏览0
暂无评分
摘要
Featured Application Adsorption technology for organic pollutants with new adsorbents materials. Many adsorbent materials are now commercially available; however, studies have focused on modifying them to enhance their properties. In this study, an activated carbon (AC) and hydroxyapatite (HAp) composite was synthesized by the immersion of ACs in a simulated body fluid solution, varying the AC oxidation degree along with the addition of CaSiO3. The resulting composites were characterized by ash %, X-ray fluorescence (XRF), Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and point of zero charge (PZC). The characterization results indicated that the addition of CaSiO3 and the oxygenated functional groups in the AC surface are key factors for HAp growth. The composites were tested on methylene blue (MB) adsorption as a potential application for the synthesized materials. Adsorption isotherms were modeled with Langmuir and Freundlich isotherms, and the composites were fitted to a Langmuir model with the highest q(max) value of 9.82. The kinetic results indicated that for the pseudo-second-order model, the composites fitted, with a contact time of 180 min to remove a 95.61% average of the MB. The results indicate that composite materials can be an efficient adsorbent for the removal of MB from aqueous solutions at low concentrations since the material with the highest amount of HAp growth removed 99.8% of the MB in 180 min.
更多
查看译文
关键词
activated carbon,CaSiO3,oxidation,hydroxyapatite,methylene blue,adsorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要