Consequences of Humidity Cycling on the Moisture Absorption Characteristics of Epoxy Resins with Different Network Architectures

ACS APPLIED POLYMER MATERIALS(2023)

引用 0|浏览5
暂无评分
摘要
Absorbed moisture is a perpetual contributor to the steady loss of performance for in-service epoxy-based polymer materials. On the atomistic scale, the state of individual water molecules in a crosslinked epoxy is dependent on the strength of the secondary bonding interactions they engage in and their local physical environment. However, these chemical and physical variables can be tailored on the macroscopic scale through changes in the experimental curing schedule. In this study, crosslinked epoxy matrices with different network architectures were cured by varying the stoichiometric mixing ratios of the epoxy: hardener combination. The samples were subsequently subjected to fluctuating humidity conditions which comprises repeating cycles of high (similar to 95% RH) and ambient humidity. Both infrared (IR) spectroscopy and dielectric readings were successful in establishing a strong correlation between moisture absorption, network morphology, and dielectric properties. An anomalous behavior observed during the spectral peak analysis helped us understand how absorption history can redistribute the concentrations of water species at the same moisture concentrations. The results from this study elucidate how the phenomenon of absorption itself can act as a damage initiation event, and they also indicate that the spatial quantification of the different water species across a sample can allow us to map damage sites, nanopores, and areas with an overall higher void content.
更多
查看译文
关键词
epoxy,moisture,humidity,infrared spectroscopy,dielectric properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要