Webly Supervised Fine-Grained Image Recognition with Graph Representation and Metric Learning

Jianman Lin, Jiantao Lin,Yuefang Gao,Zhijing Yang,Tianshui Chen

ELECTRONICS(2022)

引用 0|浏览1
暂无评分
摘要
The aim of webly supervised fine-grained image recognition (FGIR) is to distinguish sub-ordinate categories based on data retrieved from the Internet, which can significantly mitigate the dependence of deep learning on manually annotated labels. Most current fine-grained image recognition algorithms use a large-scale data-driven deep learning paradigm, which relies heavily on manually annotated labels. However, there is a large amount of weakly labeled free data on the Internet. To utilize fine-grained web data effectively, this paper proposes a Graph Representation and Metric Learning (GRML) framework to learn discriminative and effective holistic-local features by graph representation for web fine-grained images and to handle noisy labels simultaneously, thus effectively using webly supervised data for training. Specifically, we first design an attention-focused module to locate the most discriminative region with different spatial aspects and sizes. Next, a structured instance graph is constructed to correlate holistic and local features to model the holistic-local information interaction, while a graph prototype that contains both holistic and local information for each category is introduced to learn category-level graph representation to assist in processing the noisy labels. Finally, a graph matching module is further employed to explore the holistic-local information interaction through intra-graph node information propagation as well as to evaluate the similarity score between each instance graph and its corresponding category-level graph prototype through inter-graph node information propagation. Extensive experiments were conducted on three webly supervised FGIR benchmark datasets, Web-Bird, Web-Aircraft and Web-Car, with classification accuracy of 76.62%, 85.79% and 82.99%, respectively. In comparison with Peer-learning, the classification accuracies of the three datasets separately improved 2.47%, 4.72% and 1.59%.
更多
查看译文
关键词
webly supervised learning,fine-grained image recognition,graph representation learning,graph metric learning,noisy data
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要