谷歌浏览器插件
订阅小程序
在清言上使用

Investigation of Thermal Dynamics within Rainwater Harvesting Systems and Implications for Design

JOURNAL OF SUSTAINABLE WATER IN THE BUILT ENVIRONMENT(2023)

引用 0|浏览18
暂无评分
摘要
Rainwater harvesting (RWH) systems have long been used to supply water for a variety of end uses. RWH systems, when used correctly, have proven to be effective at reducing runoff volumes and improving runoff quality at the site and catchment scales. Stormwater runoff from impervious surfaces in urban areas is thermally enriched, causing detrimental impacts to receiving waters. Research has begun to identify stormwater control measures (SCMs) that can offset this thermal loading by reducing total runoff amounts or storing the water in cooler locales. To the authors' knowledge, no evidence exists in the literature to support whether RWH systems are sources or sinks of thermal pollution or to inform the thermal dynamics within the tanks. Monitoring was undertaken to compare the thermal dynamics of paired above- and below-ground RWH systems from three locations across the eastern United States (Ohio, Virginia-North Carolina, and Florida) over a three-year period. Below-ground RWH systems had lower minimum, mean, and maximum temperatures than their above-ground counterparts. The difference in temperatures between above- and below-ground RWH systems was greatest in late spring and summer months. Water temperatures in the above-ground systems exceeded thermal sensitivity thresholds for regionally important cold-water fish for 0.7%-60.3% of the time. Below-ground tanks exceeded these limits less than 1% of the time; variance in below-ground RWH system water temperatures were 2-3 fold lower than for their above-ground counterparts. Both RWH system types formed a vertical thermal gradient with a temperature drop of 1.72C-5.6C from the top of the tank to the bottom. This thermal stratification suggests that RWH systems should be designed to overflow from the bottom of the tank in urbanizing watersheds that support cold-water fish species or are otherwise sensitive to spikes in receiving water temperature. (C) 2022 American Society of Civil Engineers.
更多
查看译文
关键词
Runoff temperature,Cistern,Low impact development,Water sensitive urban design,Trout,Salmon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要