A General and Scalable Approach to Sulfur-Doped Mono-/Bi-/Trimetallic Nanoparticles Confined in Mesoporous Carbon.

ACS nano(2023)

引用 4|浏览4
暂无评分
摘要
Metal nanoparticles confined in porous carbon materials have been widely used in various heterogeneous catalytic processes due to their enhanced activity and stability. However, fabrication of such catalysts in a facile and scalable way remains challenging. Herein, we report a general and scalable thiol-assisted strategy to synthesize sulfur-doped mono-/bi-/trimetallic nanoparticles confined in mesoporous carbon (S-M@MC, M = Pt, Pd, Rh, Co, Zn, etc.), involving only two synthetic steps, i.e., a hydrothermal process and pyrolysis. The strategy is based on coordination chemistry and hydro-phobic interaction that the metal precursors coordinated with the hydrophobic thiol ligands are located at the hydrophobic core of micelles, in situ confined in the hydrothermally prepared mesostructured polymer, and then converted into sulfur-doped metal nanoparticles confined in MC after pyrolysis. It is demonstrated that the S-PtCo@MC exhibits enhanced catalytic activity and improved durability toward acidic hydrogen evolution reaction due to the confinement effect and S-doping.
更多
查看译文
关键词
confinement,doping,hydrogen evolution reaction,mesoporous carbon,metal nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要