DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization

CoRR(2023)

引用 20|浏览111
暂无评分
摘要
Neural network-based Combinatorial Optimization (CO) methods have shown promising results in solving various NP-complete (NPC) problems without relying on hand-crafted domain knowledge. This paper broadens the current scope of neural solvers for NPC problems by introducing a new graph-based diffusion framework, namely DIFUSCO. Our framework casts NPC problems as discrete {0, 1}-vector optimization problems and leverages graph-based denoising diffusion models to generate high-quality solutions. We investigate two types of diffusion models with Gaussian and Bernoulli noise, respectively, and devise an effective inference schedule to enhance the solution quality. We evaluate our methods on two well-studied NPC combinatorial optimization problems: Traveling Salesman Problem (TSP) and Maximal Independent Set (MIS). Experimental results show that DIFUSCO strongly outperforms the previous state-of-the-art neural solvers, improving the performance gap between ground-truth and neural solvers from 1.76% to 0.46% on TSP-500, from 2.46% to 1.17% on TSP-1000, and from 3.19% to 2.58% on TSP10000. For the MIS problem, DIFUSCO outperforms the previous state-of-the-art neural solver on the challenging SATLIB benchmark. Our code is available at "https://github.com/Edward-Sun/DIFUSCO".
更多
查看译文
关键词
diffusion solvers,optimization,graph-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要