Spin-crossover complexes: Self-interaction correction vs density correction.

The Journal of chemical physics(2023)

引用 3|浏览3
暂无评分
摘要
Complexes containing a transition metal atom with a 3d-3d electron configuration typically have two low-lying, high-spin (HS) and low-spin (LS) states. The adiabatic energy difference between these states, known as the spin-crossover energy, is small enough to pose a challenge even for electronic structure methods that are well known for their accuracy and reliability. In this work, we analyze the quality of electronic structure approximations for spin-crossover energies of iron complexes with four different ligands by comparing energies from self-consistent and post-self-consistent calculations for methods based on the random phase approximation and the Fermi-Löwdin self-interaction correction. Considering that Hartree-Fock densities were found by Song et al., J. Chem. Theory Comput. 14, 2304 (2018), to eliminate the density error to a large extent, and that the Hartree-Fock method and the Perdew-Zunger-type self-interaction correction share some physics, we compare the densities obtained with these methods to learn their resemblance. We find that evaluating non-empirical exchange-correlation energy functionals on the corresponding self-interaction-corrected densities can mitigate the strong density errors and improves the accuracy of the adiabatic energy differences between HS and LS states.
更多
查看译文
关键词
complexes,spin-crossover,self-interaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要