Voltage-Controlled Dzyaloshinskii-Moriya Interaction Torque Switching of Perpendicular Magnetization.

Physical review letters(2023)

引用 5|浏览13
暂无评分
摘要
Magnetization switching is the most important operation in spintronic devices. In modern nonvolatile magnetic random-access memory (MRAM), it is usually realized by spin-transfer torque (STT) or spin-orbit torque (SOT). However, both STT and SOT MRAM require current to drive magnetization switching, which will cause Joule heating. Here, we report an alternative mechanism, Dzyaloshinskii-Moriya interaction (DMI) torque, that can realize magnetization switching fully controlled by voltage pulses. We find that a consequential voltage-controlled reversal of DMI chirality in multiferroics can lead to continued expansion of a skyrmion thanks to the DMI torque. Enough DMI torque will eventually make the skyrmion burst into a quasiuniform ferromagnetic state with reversed magnetization, thus realizing the switching of a perpendicular magnet. The discovery is demonstrated in two-dimensional multiferroics, CuCrP_{2}Se_{6} and CrN, using first-principles calculations and micromagnetic simulations. As an example, we applied the DMI torque for simulating leaky-integrate-fire functionality of biological neurons. Our discovery of DMI torque switching of perpendicular magnetization provides tremendous potential toward magnetic-field-free and current-free spintronic devices, and neuromorphic computing as well.
更多
查看译文
关键词
voltage-controlled,dzyaloshinskii-moriya
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要