谷歌浏览器插件
订阅小程序
在清言上使用

Response Mechanism and Rapid Detection of Phenotypic Information in Rice Root under Heavy Metal Stress

Journal of Hazardous Materials(2023)

引用 4|浏览32
暂无评分
摘要
The root is an important organ affecting cadmium accumulation in grains, but there is no comprehensive research involving rice root phenotype under cadmium stress yet. To assess the effect of cadmium on root phenotypes, this paper investigated the response mechanism of phenotypic information including cadmium accumulation, adversity physiology, morphological parameters, and microstructure characteristics, and explored rapid detection methods of cadmium accumulation and adversity physiology. We found that cadmium had the effect of "low-promotion and high-inhibition" on root phenotypes. In addition, the rapid detection of cadmium (Cd), soluble protein (SP), and malondialdehyde (MDA) were achieved based on spectroscopic technology and chemometrics, where the optimal prediction model was least squares support vector machine (LS-SVM) based on the full spectrum (Rp=0.9958) for Cd, competitive adaptive reweighted sampling-extreme learning machine (CARS-ELM) (Rp=0.9161) for SP and CARS-ELM (Rp=0.9021) for MDA, all with Rp higher than 0.9. Surprisingly, it took only about 3 min, which was more than 90% reduction in detection time compared with laboratory analysis, demonstrating the excellent ability of spectroscopy for root phenotype detection. These results reveal response mechanism to heavy metal and provide rapid detection method for phenotypic information, which can substantially contribute to crop heavy metal control and food safety supervision.
更多
查看译文
关键词
Heavy metal,Rice root phenotype,Rapid detection,Spectroscopy,Chemometrics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要