谷歌浏览器插件
订阅小程序
在清言上使用

Flowerbed-Inspired Biomimetic Scaffold with Rapid Internal Tissue Infiltration and Vascularization Capacity for Bone Repair.

ACS nano(2023)

引用 15|浏览43
暂无评分
摘要
The favorable microstructure and bioactivity of tissue-engineered bone scaffolds are closely associated with the regenerative efficacy of bone defects. For the treatment of large bone defects, however, most of them fail to meet requirements such as adequate mechanical strength, highly porous structure, and excellent angiogenic and osteogenic activities. Herein, inspired by the characteristics of a "flowerbed", we construct a short nanofiber aggregates-enriched dual-factor delivery scaffold via 3D printing and electrospinning techniques for guiding vascularized bone regeneration. By the assembly of short nanofibers containing dimethyloxalylglycine (DMOG)-loaded mesoporous silica nanoparticles with a 3D printed strontium-contained hydroxyapatite/polycaprolactone (SrHA@PCL) scaffold, an adjustable porous structure can be easily realized by changing the density of nanofibers, while strong compressive strength will be acquired due to the framework role of SrHA@PCL. Owing to the different degradation performance between electrospun nanofibers and 3D printed microfilaments, a sequential release behavior of DMOG and Sr ions is achieved. Both in vivo and in vitro results demonstrate that the dual-factor delivery scaffold has excellent biocompatibility, significantly promotes angiogenesis and osteogenesis by stimulating endothelial cells and osteoblasts, and effectively accelerates tissue ingrowth and vascularized bone regeneration through activating the hypoxia inducible factor-1α pathway and immunoregulatory effect. Overall, this study has provided a promising strategy for constructing a bone microenvironment-matched biomimetic scaffold for bone regeneration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要