谷歌浏览器插件
订阅小程序
在清言上使用

Effect and Mechanism of Simultaneous Cadmium-Tetracycline Removal by a Self-Assembled Microbial-Photocatalytic Coupling System.

JOURNAL OF HAZARDOUS MATERIALS(2023)

引用 3|浏览22
暂无评分
摘要
Electrochemical bacteria Shewanella oneidensis MR-4 (MR-4) was used to biologically generate cadmium sulfide (bio-CdS) nanocrystals and construct a self-assembled intimately coupled photocatalysis-biodegradation system (SA-ICPB) to remove cadmium (Cd) and tetracycline hydrochloride (TCH) from wastewater. The characterization using EDS, TEM, XRD, XPS, and UV–vis confirmed the successful CdS bio-synthesis and its visible-light response capacity (520 nm). 98.4% of Cd2+ (2 mM) was removed during bio-CdS generation within 30 min. The electrochemical analysis confirmed the photoelectric response capability of the bio-CdS as well as its photocatalytic efficiency. Under visible light, SA-ICPB entirely eliminated TCH (30 mg/L). In 2 h, 87.2% and 43.0% of TCH were removed separately with and without oxygen. 55.7% more chemical oxygen demand (COD) was removed with oxygen participation, indicating the degradation intermediates elimination by SA-ICPB required oxygen participation. Biodegradation dominated the process under aerobic circumstances. Electron paramagnetic resonance analysis indicated that h+ and ·O2- played a decisive role in photocatalytic degradation. Mass spectrometry analysis proved that TCH was dehydrated, dealkylated, and ring-opened before mineralizing. In conclusion, MR-4 can spontaneously generate SA-ICPB and rapidly-deeply eliminate antibiotics by coupling photocatalytic and microbial degradation. Such an approach was efficient for the deep degradation of persistent organic pollutants with antimicrobial properties.
更多
查看译文
关键词
Microbial-photocatalytic coupling,Bio-CdS,Self-assembling,Tetracycline hydrochloride,Degradation mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要