谷歌浏览器插件
订阅小程序
在清言上使用

Ytterbium-Doped Lead-Halide Perovskite Nanocrystals: Synthesis, Near-Infrared Emission, and Open-Source Machine Learning Model for Prediction of Optical Properties

NANOMATERIALS(2023)

引用 4|浏览23
暂无评分
摘要
Lead-halide perovskite nanocrystals are an attractive class of materials since they can be easily fabricated, their optical properties can be tuned all over the visible spectral range, and they possess high emission quantum yields and narrow photoluminescence linewidths. Doping perovskites with lanthanides is one of the ways to widen the spectral range of their emission, making them attractive for further applications. Herein, we summarize the recent progress in the synthesis of ytterbium-doped perovskite nanocrystals in terms of the varying synthesis parameters such as temperature, ligand molar ratio, ytterbium precursor type, and dopant content. We further consider the dependence of morphology (size and ytterbium content) and optical parameters (photoluminescence quantum yield in visible and near-infrared spectral ranges) on the synthesis parameters. The developed open-source code approximates those dependencies as multiple-parameter linear regression and allows us to estimate the value of the photoluminescence quantum yield from the parameters of the perovskite synthesis. Further use and promotion of an open-source database will expand the possibilities of the developed code to predict the synthesis protocols for doped perovskite nanocrystals.
更多
查看译文
关键词
lead-halide perovskite,doping,synthesis,quantum cutting,quantum yield,machine learning,multiple regression
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要