Structural, Microstructural, Elastic, and Microplastic Properties of Aluminum Wires (from AAAC (A50) Cables) after Fatigue Tests

Metals(2023)

引用 1|浏览2
暂无评分
摘要
Single Al wires from unused AAAC (A50) cables were studied after laboratory fatigue testing, which simulated processes arising in these wires during their operation in the cables of overhead power lines (OPLs) and are valuable for predicting the lifespan of cables of OPLs. These wires, which were either fractured during testing (maximum loads-149.4-155.9 MPa; number of cycles till rupture-83,656-280,863) or remained intact, were examined by X-ray diffraction, electron backscatter diffraction, densitometry, and acoustic methods. An analysis of the structural, microstructural, and elastic-microplastic properties of the wires revealed common characteristics inherent in the samples after operation in OPLs and after fatigue tests, namely a decrease in the integral and near-surface layer (NSL) densities of the wires, a decrease in their Young's modulus and microplastic stress, and an increase in the decrement. However, the tests did not fully reproduce the environmental influence, since in contrast to the natural conditions, no aluminum-oxide crystallites were formed in NSLs in tests and the microstructure was different. A comparison of the characteristics of the broken and unbroken wires allows us to suggest that the fastening locations of the wires are crucial for their possible failure.
更多
查看译文
关键词
aluminum wires,overhead power transmission lines,fatigue test,XRD,EBSD,densitometry,elastic-microplastic properties,density,microstructure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要