Parla: A Python Orchestration System for Heterogeneous Architectures

SC22: International Conference for High Performance Computing, Networking, Storage and Analysis(2022)

引用 0|浏览76
暂无评分
摘要
Python's ease of use and rich collection of numeric libraries make it an excellent choice for rapidly developing scientific applications. However, composing these libraries to take advantage of complex heterogeneous nodes is still difficult. To simplify writing multi-device code, we created Parla, a heterogeneous task-based programming framework that fully supports Python's scientific programming stack. Parla's API is based on Python decorators and allows users to wrap code in Parla tasks for parallel execution. Parla arrays enable automatic movement of data between devices. The Parla runtime handles resource-aware mapping, scheduling, and execution of tasks. Compared to other Python tasking systems, Parla is unique in its parallelization of tasks within a single process, its GPU context and resource-aware runtime, and its design around gradual adoption to provide easy migration of and integration into existing Python applications. We show that Parla can achieve performance competitive with hand-optimized code while improving ease of development.
更多
查看译文
关键词
Parallel application frameworks,task based parallelism,heterogeneous computing,load balancing and scheduling algorithms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要