Metabolic Characterization and Glyceraldehyde-3-Phosphate Dehydrogenase-Dependent Regulation of Epithelial Sodium Channels in hPheo1 Wild-type and SDHB Knockdown Cells.

Endocrinology(2023)

引用 0|浏览12
暂无评分
摘要
Pheochromocytomas (PCC) and paragangliomas (PGL) are rare neuroendocrine tumors with limited curative treatment options outside of surgical resection. Patients with mutations in succinate dehydrogenase subunit B (SDHB) are at an increased risk of malignant and aggressive disease. As cation channels are associated with tumorigenesis, we studied the expression and activity of cation channels from the Degenerin superfamily in a progenitor cell line derived from a human PCC. hPheo1 wild-type (WT) and SDHB knockdown (KD) cells were studied to investigate whether epithelial sodium channels (ENaC) and acid-sensing ion channels (ASIC) are regulated by the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH). First, we performed targeted metabolomic studies and quantified changes in glycolysis pathway intermediates and citric acid cycle intermediates using hPheo1 WT cells and SDHB KD cells. Next, we performed protein biochemistry and electrophysiology studies to characterize the protein expression and activity, respectively, of these ion channels. Our western blot experiments show both ENaC alpha and ASIC1/2 are expressed in both hPheo1 WT and SDHB KD cells, with lower levels of a cleaved 60 kDa form of ENaC in SDHB KD cells. Single-channel patch clamp studies corroborate these results and further indicate channel activity is decreased in SDHB KD cells. Additional experiments showed a more significant decreased membrane potential in SDHB KD cells, which were sensitive to amiloride compared to WT cells. We provide evidence for the differential expression and activity of ENaC and ASIC hybrid channels in hPheo1 WT and SDHB KD cells, providing an important area of investigation in understanding SDHB-related disease.
更多
查看译文
关键词
ASIC,ENaC,GAPDH,SDHB,degenerin superfamily
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要