谷歌浏览器插件
订阅小程序
在清言上使用

Dynamical Localization and Slow Dynamics in Quasiperiodically-Driven Quantum Systems

Physical review B/Physical review B(2024)

引用 0|浏览4
暂无评分
摘要
We investigate the role of a quasiperiodically driven electric field in a one-dimensional disordered fermionic chain. In the clean non-interacting case, we show the emergence of dynamical localization - a phenomenon previously known to exist only for a perfect periodic drive. In contrast, in the presence of disorder, where a periodic drive preserves Anderson localization, we show that the quasiperiodic drive destroys it and leads to slow relaxation. Considering the role of interactions, we uncover the phenomenon of quasiperiodic driving-induced logarithmic relaxation, where a suitably tuned drive (corresponding to dynamical localization in the clean, non-interacting limit) slows down the dynamics even when the disorder is small enough for the system to be in the ergodic phase. This is in sharp contrast to the fast relaxation seen in the undriven model, as well as the absence of thermalization (drive-induced MBL) exhibited by a periodically driven model.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要