An All-Solid-State Flexible Supercapacitor Based on MXene/MSA Ionogel and Polyaniline Electrode with Wide Temperature Range, High Stability, and High Energy Density.

Molecules (Basel, Switzerland)(2023)

引用 0|浏览9
暂无评分
摘要
In this study, an ionogel electrolyte (PAIM-X) consisting of 1-vinyl-3-methylimidazole bis (trifluoromethyl sulfonyl) imide ([VMIM][TFSI]), Polyacrylamide (PAAm), and MXene were prepared. The conductivity of PAIM-X and integral area of the voltammetric curve of the supercapacitor (PAIMSC) were improved by adding MXene. The addition of [VMIM][TFSI] enhanced the conductivity and applicable temperature of the ionogel electrolyte. At 90 °C, the conductivity of PAIM-4 can reach 36.4 mS/cm. In addition, spherical polyaniline with good electrochemical properties was synthesized and coated on graphite paper as an active substance. An all-solid-state supercapacitor was composed of PAIM-4, polyaniline electrode with 1.2 V potential window, pseudo-capacitors and high quality capacitors. The solvent 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl imide) ([EMIM][TFSI]) and methanesulfonic acid (MSA) were introduced into the ionogel to promote the redox reaction of polyaniline (PANI). The mass specific capacitance of PAIMSC was 204.6 F/g and its energy density could reach 40.92 Wh/kg, which shows great potential for practical application at high temperature. The device had good rate performance and cycle performance, and its capacitance retention rate was still 91.56% after 10,000 cycles. In addition, the supercapacitor can work within the temperature range of -20 °C to 90 °C. These excellent electrochemical properties indicate that PAAm/IL/Mxene-X has broad application space and prospect.
更多
查看译文
关键词
Mxene,flexible supercapacitors,high temperature,ionogel
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要