A photonic artificial synapse with a reversible multifaceted photochromic compound.

Deeksha Sharma,Dheemahi Rao,Bivas Saha

Nanoscale horizons(2023)

引用 1|浏览3
暂无评分
摘要
Modern computational technology based on the von Neumann architecture physically partitions memory and the central processing unit, resulting in fundamental speed limitations and high energy consumption. On the other hand, the human brain is an extraordinary multifunctional organ composed of more than a billion neurons capable of simultaneously thinking, processing, and storing information. Neurons are interconnected with synapses that control information flow from pre-synaptic-to-post-synaptic neurons. Therefore, emulating synaptic functionalities and developing neuromorphic computational architecture has recently attracted much interest. Due to their high-speed, large bandwidth, and no interconnect-related power loss, photonic (all-optical) synapses can overcome the existing hurdles with electronic synapses. Here, we show an artificial photonic synapse by utilizing the well-established reversible, high-contrast photochromic organic compound, spiropyran, stimulated by optical pulses. Optical transmission of spiropyran significantly changes during spiropyran-merocyanine isomerization driven by UV-visible optical pulses. Such changes are equivalent to the biological synapses' inhibitory and excitatory synaptic actions. The slow relaxation to the initial state is considered as synaptic plasticity responsible for learning and memory formation. Short-term memory (STM), long-term memory (LTM), and transition from the STM to the LTM are demonstrated in all-optical synapses by modulating the stimuli's strength. The solvatochromic properties of spiropyran are further utilized to augment memory in synapses. Our work shows that photochromic organic compounds are excellent hosts for artificial photonic synapses and can be implemented in neuromorphic applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要