Competition of Quasiparticles and Magnetization Noise in Hybrid Ferromagnetic Transmon Qubits

IEEE Transactions on Applied Superconductivity(2023)

引用 1|浏览26
暂无评分
摘要
The coexistence between ferromagnetic ordering and superconducting transport in tunnel ferromagnetic Josephson junctions (SFS JJs) accounts for a wide range of unconventional physical properties. The integration of both insulating ferromagnets or multi-layered insulator-ferromagnet barriers allows to combine ferromagnetic switching properties with peculiar low quasiparticle dissipation, which could enhance the capabilities of SFS JJs as active elements in quantum circuits. Here we show that split-transmon qubits based on tunnel ferromagnetic JJs realize an ideal playground to study noise fluctuations in ferromagnetic Josephson devices. By considering the transport properties of measured Al-based tunnel SFS JJs, we report on a theoretical study of the competition between intrinsic magnetization fluctuations in the barrier and quasiparticles dissipation, thus providing specific operation regimes to identify and disentangle the two noise sources, depending on the peculiar properties of the F layer and F/S interface.
更多
查看译文
关键词
Hybrid quantum circuits,transmon qubits,ferromagnetic Josephson junctions,magnetization dynamics detection,superconducting qubits coherence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要