An electrochemical compatibility investigation of RTIL-based electrolytes with Si-based anodes for advanced Li-ion batteries

MATERIALS TODAY SUSTAINABILITY(2023)

引用 1|浏览10
暂无评分
摘要
Silicon is amongst the most attractive anode materials for Li-ion batteries because of its high gravimetric and volumetric capacities; importantly, it is also abundant and cheap, thus sustainable. For a widespread practical deployment of Si-based electrodes, research efforts must focus on significant breakthroughs to addressing the major challenges related to their poor cycling stability. In this work, we focus on the electrolyte-electrode relationships to support the scientific community with a systematic overview of Si -based cell design strategies reporting a thorough electrochemical study of different room temperature ionic liquid (RTIL)-based electrolytes, which contain either lithium bis(fluorosulfonyl)imide (LiFSI) or lithium bis(trifluoromethylsulfonyl)imide (LiTFSI). Their galvanostatic cycling performances with mixed silicon/graphite/few-layer graphene electrodes are evaluated, with first cycle Coulombic efficiency approaching 90% and areal capacity z2 mAh/cm2 in the limited cut-off range of 0.1-2 V vs. Li+/Li0. The investigation evidences the superior characteristics of the FSI-based RTILs with respect to the TFSI-based one, which is mostly associated with the superior SEI forming ability of FSI-based systems, even without the use of specific additives. In particular, the LiFSI-EMIFSI electrolyte composition shows the best performance in both Li-half cells and Li-ion cells in which the Si-based electrodes are coupled with 4V -class composite NMC-based cathodes.(c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Ionic liquid,Safe electrolyte,Silicon anode,High voltage cathode,Lithium battery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要