谷歌浏览器插件
订阅小程序
在清言上使用

Effect of Pd(II) Uptake on High-Temperature Phase Transitions in a Hybrid Organic-Inorganic Perovskite Semiconductor.

Dalton Transactions(2023)

引用 0|浏览26
暂无评分
摘要
Hybrid organic-inorganic perovskites (HOIPs) have been widely studied for their interesting functions and potential applications. Here, we report a novel sulfur-containing hybrid organic-inorganic perovskite based on a one-dimensional ABX3-type compound: [C3H7N2S]PbI3 ([C3H7N2S]+ is 2-amino-2-thiazolinium) (1). Compound 1 undergoes two high-temperature phase transitions at 363 K and 401 K, respectively, showing a band gap of 2.33 eV, and has a narrower band gap compared to other one-dimensional materials. Moreover, by introducing thioether groups into the organic component, 1 has the ability to uptake Pd(II) ions. Compared with previously reported low-temperature isostructural phase transition sulfur-containing hybrids, the molecular motion of 1 becomes more intense under the stimulation of high temperature, leading to changes in the space group during the two phase transitions (Pbca → Pmcn → Cmcm), which are no longer the previous isostructural phase transitions. Significant changes in the phase transition behavior and semiconductor properties before and after metal absorption make it possible to monitor the absorption process of metal ions. The study of the effect of Pd(II) uptake on phase transitions may be helpful to reveal the mechanism of phase transitions more deeply. This work will broaden the hybrid organic-inorganic ABX3-type semiconductor family and pave the way for the development of organic-inorganic hybrid-based multifunctional phase transition materials.
更多
查看译文
关键词
Organometal Halide Perovskites
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要