谷歌浏览器插件
订阅小程序
在清言上使用

Tuning the Trade‐Off Between Ethane/Ethylene Selectivity and Adsorption Capacity Within Isoreticular Microporous Metal−Organic Frameworks by Linker Fine‐Fluorination

SMALL(2023)

引用 2|浏览44
暂无评分
摘要
The pore dimension and surface property directly dictate the transport of guests, endowing diverse gas selective adsorptions to porous materials. It is highly relevant to construct metal-organic frameworks (MOFs) with designable functional groups that can achieve feasible pore regulation to improve their separation performances. However, the role of functionalization in different positions or degrees within framework on the separation of light hydrocarbon has rarely been emphasized. In this context, four isoreticular MOFs (TKL-104-107) bearing dissimilar fluorination are rationally screened out and afforded intriguing differences in the adsorption behavior of C2 H6 and C2 H4 . Ortho-fluoridation of carboxyl allows TKL-105-107 to exhibit enhanced structural stabilities, impressive C2 H6 adsorption capacities (>125 cm3 g-1 ) and desirable inverse selectivities (C2 H6 over C2 H4 ). The more modified ortho-fluorine group and meta-fluorine group of carboxyl have improved the C2 H6 /C2 H4 selectivity and adsorption capacity, respectively, and the C2 H6 /C2 H4 separation potential can be well optimized via linker fine-fluorination. Meanwhile, dynamic breakthrough experiments proved that TKL-105-107 can be used as highly efficient C2 H6 -selective adsorbents for C2 H4 purification. This work highlights that the purposeful functionalization of pore surfaces facilitates the assembly of highly efficient MOF adsorbents for specific gas separation.
更多
查看译文
关键词
Metal-Organic Frameworks (MOFs),Metal-Organic Frameworks,Organic Frameworks,Membrane Separations,Porous Materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要