Stability of the In-Plane Room Temperature van der Waals Ferromagnet Chromium Ditelluride and Its Conversion to Chromium-Interleaved CrTe$_2$ Compounds

arxiv(2023)

引用 1|浏览36
暂无评分
摘要
Van der Waals magnetic materials are building blocks for novel kinds of spintronic devices and playgrounds for exploring collective magnetic phenomena down to the two-dimensional limit. Chromium-tellurium compounds are relevant in this perspective. In particular, the 1$T$ phase of CrTe$_2$ has been argued to have a Curie temperature above 300~K, a rare and desirable property in the class of lamellar materials, making it a candidate for practical applications. However, recent literature reveals a strong variability in the reported properties, including magnetic ones. Using electron microscopy, diffraction and spectroscopy techniques, together with local and macroscopic magnetometry approaches, our work sheds new light on the structural, chemical and magnetic properties of bulk 1$T$-CrTe$_2$ exfoliated in the form of flakes having a thickness ranging from few to several tens of nanometers. We unambiguously establish that 1$T$-CrTe$_2$ flakes are ferromagnetic above room temperature, have an in-plane easy axis of magnetization, low coercivity, and we confirm that their Raman spectroscopy signatures are two modes, $E_{2\text{g}}$ (103.5~cm$^{-1}$) and $A_{1\text{g}}$ (136.5~cm$^{-1}$). We also prove that thermal annealing causes a phase transformation to monoclinic Cr$_5$Te$_8$ and, to a lesser extent, to trigonal Cr$_5$Te$_8$. In sharp contrast with 1$T$-CrTe$_2$, none of these compounds have a Curie temperature above room temperature, and they both have perpendicular magnetic anisotropy. Our findings reconcile the apparently conflicting reports in the literature and open opportunities for phase-engineered magnetic properties.
更多
查看译文
关键词
van der Waals ferromagnets,two-dimensional materials,stability,room temperature ferromagnetism,CrTe2,Cr5Te8
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要