Synthetic red supergiant explosion model grid for systematic characterization of Type II supernovae

arxiv(2023)

引用 2|浏览7
暂无评分
摘要
A new model grid containing 228,016 synthetic red supergiant explosions (Type II supernovae) is introduced. Time evolution of spectral energy distributions from 1 A to 50,000 A (100 frequency bins in a log scale) is computed at each time step up to 500 days after explosion in each model. We provide light curves for the filters of the Vera C. Rubin Observatory's Legacy Survey of Space and Time (LSST), Zwicky Transient Facility (ZTF), Sloan Digital Sky Servey (SDSS), and the Neil Gehrels Swift Observatory, but light curves for any photometric filters can be constructed by convolving any filter response functions to the synthetic spectral energy distributions. We also provide bolometric light curves and photosphere information such as photospheric velocity evolution. The parameter space covered by the model grid is five progenitor masses (10, 12, 14, 16, and 18 Msun at the zero-age main sequence, solar metallicity), ten explosion energies (0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 x 10^51 erg), nine 56Ni masses (0.001, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, and 0.3 Msun), nine mass-loss rates (1e-5.0, 1e-4.5, 1e-4.0, 1e-3.5, 1e-3.0, 1e-2.5, 1e-2.0, 1e-1.5, and 1e-1.0 Msun/yr with a wind velocity of 10 km/s), six circumstellar matter radii (1, 2, 4, 6, 8, and 10 x 10^14 cm), and ten circumstellar structures (beta = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0). 56Ni is assumed to be uniformly mixed up to the half mass of a hydrogen-rich envelope. This model grid can be a base for rapid characterizations of Type II supernovae with sparse photometric sampling expected in LSST through a Bayesian approach, for example. The model grid is available at https://doi.org/10.5061/dryad.pnvx0k6sj.
更多
查看译文
关键词
type ii supernovae
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要