Bile acid metabolism disorder mediates hepatotoxicity of Nafion by-product 2 and perfluorooctane sulfonate in male PPARα-KO mice.

The Science of the total environment(2023)

引用 3|浏览16
暂无评分
摘要
Perfluorooctane sulfonate (PFOS) and Nafion by-product 2 (H-PFMO2OSA) induce hepatotoxicity in male mice via activation of the peroxisome proliferator-activated receptor α (PPARα) pathway; however, accumulating evidence suggests that PPARα-independent pathways also play a vital role in hepatotoxicity after exposure to per- and polyfluoroalkyl substances (PFASs). Thus, to assess the hepatotoxicity of PFOS and H-PFMO2OSA more comprehensively, adult male wild-type (WT) and PPARα knockout (PPARα-KO) mice were exposed to PFOS and H-PFMO2OSA (1 or 5 mg/kg/d) for 28 d via oral gavage. Results showed that although elevations in alanine transaminase (ALT) and aspartate aminotransferase (AST) were alleviated in PPARα-KO mice, liver injury, including liver enlargement and necrosis, was still observed after PFOS and H-PFMO2OSA exposure. Liver transcriptome analysis identified fewer differentially expressed genes (DEGs) in the PPARα-KO mice than in the WT mice, but more DEGs associated with the bile acid secretion pathway after PFOS and H-PFMO2OSA treatment. Total bile acid content in the liver was increased in the 1 and 5 mg/kg/d PFOS-exposed and 5 mg/kg/d H-PFMO2OSA-exposed PPARα-KO mice. Furthermore, in PPARα-KO mice, proteins showing changes in transcription and translation levels after PFOS and H-PFMO2OSA exposure were involved in the synthesis, transportation, reabsorption, and excretion of bile acids. Thus, exposure to PFOS and H-PFMO2OSA in male PPARα-KO mice may disturb bile acid metabolism, which is not under the control of PPARα.
更多
查看译文
关键词
Perfluorooctane sulfonate,Nafion by-product 2,PPAR?-independent pathway,Hepatotoxicity,Bile acid metabolism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要