$\rho$-CP: Open Source Dislocation Density Based Crystal Plasticity Framework for Simulating Temperature- and Strain Rate-Dependent Deformation

arxiv(2023)

引用 2|浏览3
暂无评分
摘要
This work presents an open source, dislocation density based crystal plasticity modeling framework, $\rho$-CP. A Kocks-type thermally activated flow is used for accounting for the temperature and strain rate effects on the crystallographic shearing rate. Slip system-level mobile and immobile dislocation densities, as well slip system-level backstress, are used as internal state variables for representing the substructure evolution during plastic deformation. A fully implicit numerical integration scheme is presented for the time integration of the finite deformation plasticity model. The framework is implemented and integrated with the open source finite element solver, Multiphysics Object-Oriented Simulation Environment (MOOSE). Example applications of the model are demonstrated for predicting the anisotropic mechanical response of single and polycrystalline hcp magnesium, strain rate effects and cyclic deformation of polycrystalline fcc OFHC copper, and temperature and strain rate effects on the thermo-mechanical deformation of polycrystalline bcc tantanlum. Simulations of realistic Voronoi-tessellated microstructures as well as Electron Back Scatter Diffraction (EBSD) microstructures are demonstrated to highlight the model's ability to predict large deformation and misorientation development during plastic deformation.
更多
查看译文
关键词
Crystal plasticity, Open source, Dislocation density, MOOSE, EBSD, Misorientation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要