Constraining High-energy Neutrino Emission from Supernovae with IceCube

R. Abbasi, M. Ackermann, J. Adams,S. K. Agarwalla,J. A. Aguilar,M. Ahlers,J. M. Alameddine,N. M. Amin,K. Andeen,G. Anton, C. Argueelles,Y. Ashida,S. Athanasiadou,S. N. Axani,X. Bai,A. Balagopal,M. Baricevic,S. W. Barwick,V. Basu,R. Bay,J. J. Beatty, K. -H. Becker,J. Becker Tjus,J. Beise,C. Bellenghi,S. BenZvi,D. Berley, E. Bernardini,D. Z. Besson, G. Binder,D. Bindig,E. Blaufuss,S. Blot,F. Bontempo,J. Y. Book,C. Boscolo Meneguolo, S. Boeser,O. Botner, J. Boettcher,E. Bourbeau, J. Braun,B. Brinson,J. Brostean-Kaiser,R. T. Burley,R. S. Busse, D. Butterfield,M. A. Campana,K. Carloni,E. G. Carnie-Bronca,S. Chattopadhyay,C. Chen,Z. Chen,D. Chirkin,S. Choi,B. A. Clark,L. Classen, A. Coleman,G. H. Collin, A. Connolly,J. M. Conrad,P. Coppin, P. Correa,S. Countryman,D. F. Cowen, P. Dave,C. De Clercq,J. J. DeLaunay,D. Delgado Lopez,H. Dembinski,K. Deoskar,A. Desai,P. Desiati,K. D. de Vries,G. de Wasseige,T. DeYoung,A. Diaz,J. C. Diaz-Velez,M. Dittmer,A. Domi,H. Dujmovic,M. A. DuVernois,T. Ehrhardt,P. Eller, R. Engel,H. Erpenbeck,J. Evans,P. A. Evenson,K. L. Fan, K. Fang,A. R. Fazely,A. Fedynitch,N. Feigl,S. Fiedlschuster, C. Finley, L. Fischer,D. Fox,A. Franckowiak, E. Friedman, A. Fritz, P. Fuerst,T. K. Gaisser, J. Gallagher,E. Ganster,A. Garcia, S. Garrappa,L. Gerhardt,A. Ghadimi,C. Glaser,T. Glauch, T. Gluesenkamp,N. Goehlke,J. G. Gonzalez, S. Goswami,D. Grant,S. J. Gray,S. Griffin,S. Griswold, C. Guenther,P. Gutjahr, C. Haack, A. Hallgren,R. Halliday,L. Halve, F. Halzen,H. Hamdaoui,M. Ha Minh, K. Hanson, J. Hardin,A. A. Harnisch,P. Hatch, A. Haungs, K. Helbing,J. Hellrung, F. Henningsen,L. Heuermann,S. Hickford,A. Hidvegi,C. Hill,G. C. Hill, K. D. Hoffman,K. Hoshina, W. Hou, T. Huber, K. Hultqvist, M. Huennefeld, R. Hussain,K. Hymon,S. In, N. Iovine, A. Ishihara,M. Jacquart, M. Jansson,G. S. Japaridze,K. Jayakumar, M. Jeong,M. Jin,B. J. P. Jones, D. Kang,W. Kang, X. Kang, A. Kappes,D. Kappesser,L. Kardum,T. Karg, M. Karl,A. Karle,U. Katz,M. Kauer,J. L. Kelley,A. Khatee Zathul,A. Kheirandish, K. Kin,J. Kiryluk, S. R. Klein,A. Kochocki,R. Koirala, H. Kolanoski,T. Kontrimas, L. Koepke,C. Kopper,D. J. Koskinen,P. Koundal,M. Kovacevich, M. Kowalski,T. Kozynets,K. Kruiswijk,E. Krupczak,A. Kumar, E. Kun,N. Kurahashi, N. Lad,C. Lagunas Gualda, M. Lamoureux,M. J. Larson,F. Lauber,J. P. Lazar,J. W. Lee,K. Leonard DeHolton,A. Leszczynska,M. Lincetto,Q. R. Liu,M. Liubarska,E. Lohfink, C. Love,C. J. Lozano Mariscal, L. Lu,F. Lucarelli, A. Ludwig,W. Luszczak, Y. Lyu, W. Y. Ma, J. Madsen,K. B. M. Mahn,Y. Makino,S. Mancina,W. Marie Sainte,I. C. Maris,S. Marka,Z. Marka,M. Marsee,I. Martinez-Soler,R. Maruyama,F. Mayhew,T. McElroy,F. McNally,J. Mead, K. Meagher,S. Mechbal,A. Medina, M. Meier,S. Meighen-Berger,Y. Merckx,L. Merten,J. Micallef, D. Mockler,T. Montaruli, R. W. Moore,Y. Morii,R. Morse,M. Moulai, T. Mukherjee,R. Naab, R. Nagai,M. Nakos,U. Naumann,J. Necker, M. Neumann,H. Niederhausen,M. U. Nisa,A. Noell,S. C. Nowicki,A. Obertacke Pollmann, V. O'Dell, M. Oehler,B. Oeyen, A. Olivas,R. Orsoe, J. Osborn, E. O'Sullivan,H. Pandya, N. Park,G. K. Parker,E. N. Paudel,L. Paul,C. Perez de los Heros, J. Peterson,S. Philippen,S. Pieper,A. Pizzuto, M. Plum,Y. Popovych,M. Prado Rodriguez,B. Pries,R. Procter-Murphy,G. T. Przybylski, C. Raab,J. Rack-Helleis, K. Rawlins,Z. Rechav,A. Rehman,P. Reichherzer,G. Renzi,E. Resconi,S. Reusch,W. Rhode, M. Richman,B. Riedel,E. J. Roberts, S. Robertson,S. Rodan,G. Roellinghoff,M. Rongen,C. Rott,T. Ruhe, L. Ruohan, D. Ryckbosch,I. Safa,J. Saffer,D. Salazar-Gallegos,P. Sampathkumar,S. E. Sanchez Herrera,A. Sandrock,M. Santander,S. Sarkar, S. Sarkare,J. Savelberg,P. Savina,M. Schaufel,H. Schieler, S. Schindler, B. Schlueter, T. Schmidt, J. Schneider, F. G. Schroeder,L. Schumacher,G. Schwefer,S. Sclafani,D. Seckel,S. Seunarine,A. Sharma,S. Shefali,N. Shimizu,M. Silva,B. Skrzypek,B. Smithers, R. Snihur,J. Soedingrekso, A. Sogaard,D. Soldin, G. Sommani,C. Spannfellner,G. M. Spiczak,C. Spiering, M. Stamatikos, T. Stanev, A. Stasik, R. Stein,T. Stezelberger, T. Stuerwald,T. Stuttard,G. W. Sullivan,I. Taboada,S. Ter-Antonyan,W. G. Thompson,J. Thwaites,S. Tilav,K. Tollefson, C. Toennis,S. Toscano, D. Tosi,A. Trettin,C. F. Tung, R. Turcotte,J. P. Twagirayezu,B. Ty,M. A. Unland Elorrieta,A. K. Upadhyay,K. Upshaw,N. Valtonen-Mattila,J. Vandenbroucke,N. van Eijndhoven,D. Vannerom,J. van Santen,J. Vara,J. Veitch-Michaelis,M. Venugopal,S. Verpoest,D. Veske,C. Walck,T. B. Watson, C. Weaver,P. Weigel,A. Weindl,J. Weldert,C. Wendt,J. Werthebach,M. Weyrauch,N. Whitehorn,C. H. Wiebusch,N. Willey, D. R. Williams,M. Wolf,G. Wrede, J. Wulff,X. W. Xu,J. P. Yanez,E. Yildizci, S. Yoshida,F. Yu,S. Yu,T. Yuan,Z. Zhang,P. Zhelnin

arxiv(2023)

引用 4|浏览79
暂无评分
摘要
Core-collapse supernovae are a promising potential high-energy neutrino source class. We test for correlation between seven years of IceCube neutrino data and a catalog containing more than 1000 core-collapse supernovae of types IIn and IIP and a sample of stripped-envelope supernovae. We search both for neutrino emission from individual supernovae as well as for combined emission from the whole supernova sample, through a stacking analysis. No significant spatial or temporal correlation of neutrinos with the cataloged supernovae was found. All scenarios were tested against the background expectation and together yield an overall p-value of 93%; therefore, they show consistency with the background only. The derived upper limits on the total energy emitted in neutrinos are 1.7 x 10(48) erg for stripped-envelope supernovae, 2.8 x 10(48) erg for type IIP, and 1.3 x 10(49) erg for type IIn SNe, the latter disfavoring models with optimistic assumptions for neutrino production in interacting supernovae. We conclude that stripped-envelope supernovae and supernovae of type IIn do not contribute more than 14.6% and 33.9%, respectively, to the diffuse neutrino flux in the energy range of about [ 10(3)-10(5)] GeV, assuming that the neutrino energy spectrum follows a power-law with an index of -2.5. Under the same assumption, we can only constrain the contribution of type IIP SNe to no more than 59.9%. Thus, core-collapse supernovae of types IIn and stripped-envelope supernovae can both be ruled out as the dominant source of the diffuse neutrino flux under the given assumptions.
更多
查看译文
关键词
supernovae,high-energy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要