Squeezing Millimeter Waves through a Single, Nanometer-wide, Centimeter-long Slit

Scientific Reports(2014)

引用 0|浏览3
暂无评分
摘要
We demonstrate broadband non-resonant squeezing of terahertz (THz) waves through an isolated 2-nm-wide, 2-cm-long slit (aspect ratio of 107), representing a maximum intensity enhancement factor of one million. Unlike resonant nanogap structures, a single, effectively infinitely-long slit passes incident electromagnetic waves with no cutoff, enhances the electric field within the gap with a broad 1/f spectral response and eliminates interference effects due to finite sample boundaries and adjacent elements. To construct such a uniform, isolated slit that is much longer than the millimeter-scale spot of a THz beam, we use atomic layer lithography to pattern vertical nanogaps in a metal film over an entire 4-inch wafer. We observe an increasing field enhancement as the slit width decreases from 20 nm to 2 nm, in agreement with numerical calculations.
更多
查看译文
关键词
Nanophotonics and plasmonics,Surface patterning,Terahertz optics,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要