Highly Porous Carbon Aerogels for High-Performance Supercapacitor Electrodes.

Nanomaterials (Basel, Switzerland)(2023)

引用 3|浏览14
暂无评分
摘要
In recent years, porous carbon materials with high specific surface area and porosity have been developed to meet the commercial demands of supercapacitor applications. Carbon aerogels (CAs) with three-dimensional porous networks are promising materials for electrochemical energy storage applications. Physical activation using gaseous reagents provides controllable and eco-friendly processes due to homogeneous gas phase reaction and removal of unnecessary residue, whereas chemical activation produced wastes. In this work, we have prepared porous CAs activated by gaseous carbon dioxide, with efficient collisions between the carbon surface and the activating agent. Prepared CAs display botryoidal shapes resulting from aggregation of spherical carbon particles, whereas activated CAs (ACAs) display hollow space and irregular particles from activation reactions. ACAs have high specific surface areas (2503 m g) and large total pore volumes (1.604 cm g), which are key factors for achieving a high electrical double-layer capacitance. The present ACAs achieved a specific gravimetric capacitance of up to 89.1 F g at a current density of 1 A g, along with a high capacitance retention of 93.2% after 3000 cycles.
更多
查看译文
关键词
carbon aerogel,electric double-layer capacitors,physical activation,sol–gel polymerization,supercapacitor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要