谷歌浏览器插件
订阅小程序
在清言上使用

Design of Laser-Induced Graphene Electrodes for Water Splitting

International journal of hydrogen energy(2023)

引用 4|浏览29
暂无评分
摘要
Efficient energy storage from intermittent renewables can rely on the conversion of temporary energy excess by alkaline electrolysis, yielding oxygen and green hydrogen, which can be stored and used on demand. Electrodes made of laser-induced graphene (LIG) materials offer many advantages over the traditional graphene processing routes, due to inherent simplicity and low cost-benefit. Despite poorly studied, LIG electrodes are promising for water splitting when properly doped/modified with metals. However, proper design and processing optimization should be considered. The present study is devoted to the laser processing effects on the LIG electrode performance towards water splitting in alkaline media. Promising guidelines were obtained for hydrogen production, showing high electrochemical activity, while the microstructural degradation can be minimised by selecting suitable laser processing conditions, such as 3.6 W of laser power, 100 mm/s of laser scan rate, 36 mJ/mm of energy density and 2 laser scans.& COPY; 2022 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
LIG,Porous graphene,HER,OER,Hydrogen,Water electrolysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要