Neither GLP-1 receptors nor GFRAL neurons are required for aversive or anorectic response to DON (vomitoxin).

American journal of physiology. Regulatory, integrative and comparative physiology(2023)

引用 0|浏览16
暂无评分
摘要
Deoxynivalenol (DON), a type B trichothecene mycotoxin contaminating grains, promotes nausea, emesis and anorexia. With DON exposure, circulating levels of intestinally derived satiation hormones, including glucagon-like peptide 1 (GLP-1) are elevated. To directly test whether GLP-1 signaling mediates the effects of DON, we examined the response of GLP-1 or GLP-1R-deficient mice to DON injection. We found comparable anorectic and conditioned taste avoidance learning responses in GLP-1/GLP-1R deficient mice compared to control littermates, suggesting that GLP-1 is not necessary for the effects of DON on food intake and visceral illness. We then used our previously published data from translating ribosome affinity purification with RNA sequencing (TRAP-seq) analysis of area postrema neurons that express the receptor for the circulating cytokine growth differentiation factor (GDF15), growth differentiation factor a-like (GFRAL). Interestingly, this analysis showed that a cell surface receptor for DON, calcium sensing receptor (CaSR), is heavily enriched in GFRAL neurons. Given that GDF15 potently reduces food intake and can cause visceral illness by signaling through GFRAL neurons, we hypothesized that DON may also signal by activating CaSR on GFRAL neurons. Indeed, circulating GDF15 levels are elevated after DON administration but both GFRAL knockout and GFRAL neuron-ablated mice exhibited similar anorectic and conditioned taste avoidance responses compared to WT littermates. Thus, GLP-1 signaling and GFRAL signaling and neurons are not required for DON-induced visceral illness or anorexia.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要