谷歌浏览器插件
订阅小程序
在清言上使用

Dopant- and Surfactant-Tuned Electrode-Electrolyte Interface Enabling Efficient Alkynol Semi-Hydrogenation

Journal of the American Chemical Society(2023)

引用 7|浏览45
暂无评分
摘要
Electrochemical alkynol semi-hydrogenation has emerged as a sustainable and environmentally benign route for the production of high-value alkenols, featuring water as the hydrogen source instead of H2. It is highly challenging to design the electrode-electrolyte interface with efficient electrocatalysts and their matched electro-lytes to break the selectivity-activity stereotype. Here, boron-doped Pd catalysts (PdB) and surfactant-modified interface are proposed to enable the simultaneous increase in alkenol selectivity and alkynol conversion. Typically, compared to pure Pd and commercial Pd/C catalysts, the PdB catalyst achieves both higher turnover frequency (139.8 h-1) and specific selectivity (above 90%) for the semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY). Quaternary ammonium cationic surfactants that are employed as electrolyte additives are assembled at the electrified interface in response to applied bias potential, establishing an interfacial microenvironment that can facilitate alkynol transfer and hinder water transfer suitably. Eventually the hydrogen evolution reaction is inhibited and alkynol semi-hydrogenation is promoted, without inducing the decrease of alkenol selectivity. This work offers a distinct perspective on creating a suitable electrode-electrolyte interface for electrosynthesis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要