Performance Analysis and Structural Optimization of Torsional Flow Heat Exchangers with Sinusoidal Corrugated Baffle

Journal of Thermal Science(2023)

引用 0|浏览2
暂无评分
摘要
The thermal performance of the heat exchanger is strongly influenced by the supporting structure. Corrugated baffle enhances flow field disturbance and heat transfer through its complex and changeable flow channel. In order to enhance the thermal performance of the torsional flow heat exchanger (TFHX), the sinusoidal corrugated baffle (SCB) is used to replace the flat baffle (FB) and the full-section cycle model of the torsional flow heat exchanger with sinusoidal corrugated baffle (TFHX-SCB) is established. Computational fluid dynamics (CFD) method was used to discuss the flow resistance characteristics of the shell-side of heat exchangers. The results show that the SCB can improve the turbulence intensity and the uniformity of the flow field between the adjacent baffles. The combination of structural configurations on the shell-side of TFHX-SCB is analyzed by the central composite design (CCD)-response surface method (RSM). When the amplitude of the SCB is 1.37 mm, the cycles of the SCB are 4.42; the initial phase of the SCB is 112.73°, and the combination of heat transfer coefficient and comprehensive performance is optimal. Compared with the original structure, the heat transfer coefficient is increased by 11.58%, and the comprehensive performance is increased by 5.48%. The laser doppler velocimetry (LDV) experimental device irradiated the specified measurement point, and the dependability and accuracy of numerical simulation methods were verified. The research conclusion provides a basic theory for the structural development of the TFHX.
更多
查看译文
关键词
sinusoidal corrugated baffle,torsional flow heat exchanger,response surface method,heat transfer enhancement
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要