谷歌浏览器插件
订阅小程序
在清言上使用

Color-resolved Cherenkov Imaging Allows for Differential Signal Detection in Blood and Melanin Content

Journal of Biomedical Optics(2023)

引用 0|浏览22
暂无评分
摘要
Significance:High-energy x-ray delivery from a linear accelerator results in the production of spectrally continuous broadband Cherenkov light inside tissue. In the absence of attenuation, there is a linear relationship between Cherenkov emission and deposited dose; however, scattering and absorption result in the distortion of this linear relationship. As Cherenkov emission exits the absorption by tissue dominates the observed Cherenkov emission spectrum. Spectroscopic interpretation of this effects may help to better relate Cherenkov emission to ionizing radiation dose delivered during radiotherapy.Aim:In this study, we examined how color Cherenkov imaging intensity variations are caused by absorption from both melanin and hemoglobin level variations, so that future Cherenkov emission imaging might be corrected for linearity to delivered dose.Approach:A custom, time-gated, three-channel intensified camera was used to image the red, green, and blue wavelengths of Cherenkov emission from tissue phantoms with synthetic melanin layers and varying blood concentrations. Our hypothesis was that spectroscopic separation of Cherenkov emission would allow for the identification of attenuated signals that varied in response to changes in blood content versus melanin content, because of their different characteristic absorption spectra.Results:Cherenkov emission scaled with dose linearly in all channels. Absorption in the blue and green channels increased with increasing oxy-hemoglobin in the blood to a greater extent than in the red channel. Melanin was found to absorb with only slight differences between all channels. These spectral differences can be used to derive dose from measured Cherenkov emission.Conclusions:Color Cherenkov emission imaging may be used to improve the optical measurement and determination of dose delivered in tissues. Calibration for these factors to minimize the influence of the tissue types and skin tones may be possible using color camera system information based upon the linearity of the observed signals.
更多
查看译文
关键词
Cherenkov,Cerenkov,radiotherapy,luminescence,radiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要