Heme protein identified from scaly-foot gastropod can synthesize pyrite (FeS2) nanoparticles

Acta Biomaterialia(2023)

引用 0|浏览18
暂无评分
摘要
The scaly-foot gastropod (Chrysomallon squamiferum), which lives in the deep-sea zone of oceans around thermal vents, has a black shell and scales on the foot. Both the black shell and scales contain iron sulfide minerals such as greigite (Fe3S4) and pyrite (FeS2). Although pyrite nanoparticles can be used as materials for solar panels, it is difficult to synthesize stable and spherical nanoparticles in vitro. In this study, we extracted organic molecules that interact with nano-pyrite from the shell of the scaly-foot gastropod to develop a low-cost, eco-friendly method for pyrite nanoparticles synthesis. Myoglobin (csMG), a heme protein, was identified in the iron sulfide layer of the shell. We purified recombinant csMG (r-csMG) and demonstrated that r-csMG helped in the conversion of ferric ions, sulfide ions and sulfur into spherical shaped pyrite nanoparticles at 80°C. To reduce the effort and cost of production, we showed that commercially available myoglobin from Equus caballus (ecMG) also induced the in vitro synthesis of pyrite nanoparticles. Using structure-function experiments with digested peptides, we highlighted that the amino acid sequence of r-csMG peptides controlled the spherical shape of the nanoparticle while the hemin molecules, which the peptides interacted with, maintained the size of nanoparticles. Synthesized pyrite nanoparticles exhibited strong photoluminescence in the visible wavelength region, suggesting its potential application as a photovoltaic solar cell material. These results suggest that materials for solar cells can be produced at low cost and energy under eco-friendly conditions.
更多
查看译文
关键词
Heme protein,Myoglobin,Nanoparticle,Pyrite,Photoluminescence
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要