Capillary-driven flows in eccentric annuli under microgravity

Archive of Applied Mechanics(2022)

引用 0|浏览3
暂无评分
摘要
The capillary-driven flow is an essential portion of liquid behavior under microgravity. Capillary-driven flows in eccentric annuli under microgravity are deeply analyzed in this paper. A second-order differential equation for the climbing height of liquid is derived. It can be solved with the Runge–Kutta method with appropriate initial conditions. The influences of the dynamic angle, the friction force on the annulus wall and the liquid meniscus in the reservoir on liquid behaviors are all considered in this paper. Moreover, effects of eccentricity on flow resistance and flow speed are discussed. This study has been verified by numerical simulation with the volume of fluid method.
更多
查看译文
关键词
Capillary-driven flow, Eccentric annulus, Volume of fluid method, Microgravity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要