Principal graph embedding convolutional recurrent network for traffic flow prediction

Applied Intelligence(2023)

引用 2|浏览12
暂无评分
摘要
As an essential part of traffic management, traffic flow prediction attracts worldwide attention to intelligent traffic systems (ITSs). Complicated spatial dependencies due to the well-connected road networks and time-varying traffic dynamics make this problem extremely challenging. Recent works have focused on modeling this complicated spatial-temporal dependence through graph neural networks with a fixed weighted graph or an adaptive adjacency matrix. However, fixed graph methods cannot address data drift due to changes in the road network structure, and adaptive methods are time consuming and prone to be overfitting because the learning algorithm thoroughly optimizes the adaptive matrix. To address this issue, we propose a principal graph embedding convolutional recurrent network (PGECRN) for accurate traffic flow prediction. First, we propose the adjacency matrix graph embedding (AMGE) generation algorithm to solve the data drift problem. AMGE can model the distribution of spatiotemporal series after data drift by extracting the principal components of the original adjacency matrix and performing an adaptive transformation. At the same time, it has fewer parameters, alleviating overfitting. Then, except for the essential spatial correlations, traffic flow data are also temporally dynamic. We utilize temporal variation by integrating gated recurrent units (GRU) and AMGE to comprise the proposed model. Finally, PGECRN is evaluated on two real-world highway datasets, PeMSD4 and PeMSD8. Compared with the existing baselines, the better prediction accuracy of our model shows that it can accurately and efficiently model traffic flow.
更多
查看译文
关键词
Data drift, Principal component analysis, Graph convolution network, GRU, Traffic flow prediction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要