Overcoming ABCB1-mediated multidrug resistance by transcription factor BHLHE40.

Neoplasia (New York, N.Y.)(2023)

引用 3|浏览7
暂无评分
摘要
Multidrug resistance (MDR) hinders treatment efficacy in cancer therapy. One typical mechanism contributing to MDR is the overexpression of permeability-glycoprotein (P-gp) encoded by ATP-binding cassette subfamily B member 1 (ABCB1). Basic helix-loop-helix family member e40 (BHLHE40) is a well-known transcription factor that has pleiotropic effects including the regulation of cancer-related processes. However, whether BHLHE40 regulates MDR is still unknown. Chromatin immunoprecipitation-seq study revealed BHLHE40 occupancy in the promoter of ABCB1 gene. Adriamycin (ADM)-resistant human chronic myeloid leukemia cells (K562/A) and human breast cancer cells (MCF-7/A) were established. BHLHE40 expression was downregulated in the ADM-resistant cell lines. Overexpression of BHLHE40 resensitized resistant cells to ADM, promoted cell apoptosis in vitro and suppressed tumor growth in vivo, whereas BHLHE40 knockdown induced resistance to ADM in parental cells. Moreover, we found that BHLHE40 regulated drug resistance by directly binding to the ABCB1 promoter (-1605 to -1597) and inactivating its transcription. In consistence, the expression of BHLHE40 was negatively correlated with ABCB1 in various cancer cells, while positively with cancer cell chemosensitivity and better prognosis of patients with breast cancer. The study reveals the role of BHLHE40 as a transcriptional suppressor on the expression of ABCB1, major ABC transporter in chemoresistance. The findings extend the function of BHLHE40 in tumor progression and provides a novel mechanism for the reversal of multidrug resistance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要