Instance-dependent Sample Complexity Bounds for Zero-sum Matrix Games

arxiv(2023)

引用 0|浏览13
暂无评分
摘要
We study the sample complexity of identifying an approximate equilibrium for two-player zero-sum $n\times 2$ matrix games. That is, in a sequence of repeated game plays, how many rounds must the two players play before reaching an approximate equilibrium (e.g., Nash)? We derive instance-dependent bounds that define an ordering over game matrices that captures the intuition that the dynamics of some games converge faster than others. Specifically, we consider a stochastic observation model such that when the two players choose actions $i$ and $j$, respectively, they both observe each other's played actions and a stochastic observation $X_{ij}$ such that $\mathbb E[ X_{ij}] = A_{ij}$. To our knowledge, our work is the first case of instance-dependent lower bounds on the number of rounds the players must play before reaching an approximate equilibrium in the sense that the number of rounds depends on the specific properties of the game matrix $A$ as well as the desired accuracy. We also prove a converse statement: there exist player strategies that achieve this lower bound.
更多
查看译文
关键词
complexity,games,instance-dependent,zero-sum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要