Evidence of Formation of 1-10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries.

ACS nano(2023)

引用 2|浏览5
暂无评分
摘要
Water exhibits rich phase behaviors in nanoscale confinement. Since the simulation evidence of the formation of single-walled ice nanotubes (INTs) in single-walled carbon nanotubes was confirmed experimentally, INTs have been recognized as a form of low-dimensional hydrogen-bonding network. However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). Three distinct classes of INTs are observed, namely, INTs with flat square walls (INTs-FSW), INTs with puckered rhombic walls (INTs-PRW), and INTs with bilayer hexagonal walls (INTs-BHW). Surprisingly, when water is confined in DW-CNT (3, 3)@(13, 13), an INT-FSW freezing temperature of 380 K can be reached, which is even higher than the boiling temperature of bulk water at atmospheric pressure. The freezing temperatures of INTs-FSW decrease as their caliber increases, approaching to the freezing temperature of two-dimensional flat square ice at the large-diameter limit. In contrast, the freezing temperature of INTs-PRW is insensitive to their diameter. molecular dynamics simulations are performed to examine the stability of the INT-FSW and INT-PRW. The highly stable INTs with diameters beyond subnanometer scale can be exploited for potential applications in nanofluidic technologies and for mass transport as bioinspired nanochannels.
更多
查看译文
关键词
carbon nanotube capillary,double-walled carbon nanotube,freezing temperature,ice nanotube,nanoconfinement,spontaneous phase transition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要