Hollow mesoporous organosilica nanoparticles reduced graphene oxide based nanosystem for multimodal image-guided photothermal/photodynamic/chemo combinational therapy triggered by near-infrared.

Cell proliferation(2023)

引用 1|浏览16
暂无评分
摘要
Developing a nanosystem that can perform multimodal imaging-guided combination therapy is highly desirable but challenging. In this study, we introduced multifunctional nanoparticles (NPs) consisting of graphene oxide-grafted hollow mesoporous organosilica loaded with the drug doxorubicin (DOX) and photosensitizers tetraphenylporphyrin (TPP). These NPs were encapsulated by thermosensitive liposomes that release their contents once the temperature exceeds a certain threshold. Metal oxide NPs grown on the graphene oxide (GO) surface served multiple roles, including enhancing photothermal efficiency, acting as contrast agents to improve magnetic resonance imaging, increasing the sensitivity and specificity of photoacoustic imaging, and catalysing hydrogen peroxide for the generation of reactive oxygen species (ROS). When locally injected, the HMONs-rNGO@Fe O /MnOx@FA/DOX/TPP NPs effectively enriched in subcutaneous Hela cell tumour of mice. The photothermal/photodynamic/chemo combination therapy triggered by near-infrared (NIR) successfully suppressed the tumour without noticeable side effects. This study presented a unique approach to develop multimodal imaging-guided combination therapy for cancer.
更多
查看译文
关键词
<scp>hollow mesoporous organosilica nanoparticles,nanosystem,photothermal/photodynamic/chemo combinational therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要