Unveiling the chemical fingerprint of phosphorus-rich stars I. In the infrared region of APOGEE-2

Maren Brauner,Thomas Masseron, D. A. García-Hernández,Marco Pignatari, Kate A. Womack,Maria Lugaro,Christian R. Hayes

arxiv(2023)

引用 0|浏览15
暂无评分
摘要
The origin of phosphorus, one of the essential elements for life on Earth, is currently unknown. Prevalent models of Galactic chemical evolution (GCE) underestimate the amount of P compared to observations. The recently discovered P-rich ([P/Fe] > 1 dex) and metal-poor giants further challenge current theories on stellar nucleosynthesis. Since the observed stars are low-mass giants, our primary goal is to find clues on their progenitor. By increasing the number of known P-rich stars, we aim to narrow down a reliable chemical abundance pattern and to place robust constraints on the responsible nucleosynthetic mechanism. In the long term, identifying the progenitor of the P-rich stars may contribute to the search for the source of P in our Galaxy. We performed a detailed chemical abundance analysis based on the H-band spectra from APOGEE-2 (DR17). Employing the BACCHUS code, we measured the abundances of 13 elements in the sample, which is mainly composed of a recent collection of Si-enhanced giants. We also analyzed the orbital motions and compared the abundance results to possible nucleosynthetic formation scenarios, and also to detailed GCE models. We enlarged the sample of confirmed P-rich stars from 16 to 78 giants, which represents the largest sample of P-rich stars to date. Significant enhancements in O, Al, Si and Ce, as well as systematic correlations among the elements, unveil the chemical fingerprint of the P-rich stars. The high Mg and C+N found in some of the P-rich stars with respect to P-normal stars is not confirmed over the full sample. Strikingly, the strong over-abundance in the $\alpha$-element Si is accompanied by normal Ca and S abundances. Our analysis of the orbital motion showed that the P-rich stars do not belong to a specific sub-population. In addition, we confirm that the majority of the sample stars are not part of binary systems.
更多
查看译文
关键词
chemical fingerprint,stars,phosphorus-rich
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要