Effect of formic acid on O-2 + (OHCHOH)-C-center dot -> HCOOH + HO2 reaction under tropospheric condition: kinetics of cis and trans isomers

Physical chemistry chemical physics : PCCP(2023)

引用 1|浏览7
暂无评分
摘要
Formic acid (HCOOH) is one of the highly abundant acids in the troposphere. It is important in the formation of atmospheric aerosols and impacts the acidity of rainwater. In the present scenario, the model chemistry of HCOOH(FA) sources and sinks is poorly understood. In this work, we apply quantum chemical methods coupled with advanced statistical rate theories to understand the production of FA and its catalytic behavior under tropospheric conditions. The potential energy surfaces (PES) for O-2 + (OHCHOH)-C-center dot and O-2 + (OHCHOH)-C-center dot(+FA) reactions were constructed using the CCSD(T)/6-311++G(3df,3pd)// M06-2X/6-311++G(3df,3pd) level and rate constants for the production of FA were predicted using Rice-Ramsperger-Kassel-Marcus (RRKM)/master equation (ME) simulation with Eckart tunnelling and canonical variational transition state theory (CVT) with small curvature tunnelling (SCT) between the temperature range of 200-320 K and pressure range of 0.001 to 10 bar. The reaction follows the formation of cis and trans intermediates followed by spontaneous decomposition via concerted HO2 elimination to form stable post intermediates, which then leads to the straight formation of cis and trans formic acid. The current study also helps understand the role of cis and trans contribution to the total rate constants. The results show that O-2 + (OHCHOH)-C-center dot is dominated by both cis and trans isomers; however, the trans isomer plays a more important role in the catalytic reaction. This result is due to the formation of a strong hydrogen-bonded complex in the trans isomer, which is dominated by the enthalpy factor rather than the entropy factor. The results predict that the catalytic effect of FA on the O-2 + (OHCHOH)-C-center dot reaction is important when the concentration of FA is not included in the calculations; however, it has no (e)ffect under tropospheric conditions, when the FA concentration is included in the calculation. As a result, the total effective reaction rate constants are smaller. This work provides experimental/theoretical confirmation of Franco et al. who predicted that methanediol is the precursor for the FA formation, resolving an open problem in the kinetics of the gas phase reaction. O-2 + (OHCHOH)-C-center dot and O-2 + (OHCHOH)-C-center dot(+FA) probably explain other diol systems, which can help explain the formation of other atmospheric acids that affect aerosol formation and cloud evolution.
更多
查看译文
关键词
formic acid,tropospheric condition,isomers,kinetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要