Optimizing Performance of Quantum Operations with Non-Markovian Decoherence: The Tortoise or the Hare?

arXiv (Cornell University)(2024)

引用 0|浏览7
暂无评分
摘要
The interaction between a quantum system and its environment limits our ability to control it and perform quantum operations on it. We present an efficient method to find optimal controls for quantum systems coupled to non-Markovian environments, by using the process tensor to compute the gradient of an objective function. We consider state transfer for a driven two-level system coupled to a bosonic environment, and characterize performance in terms of speed and fidelity. This allows us to determine the best achievable fidelity as a function of process duration. We show there can be a trade-off between speed and fidelity, and that slower processes can have higher fidelity by exploiting non-Markovian effects.
更多
查看译文
关键词
quantum operations,decoherence,non-markovian
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要