ER-R: Improving regression by deep learning and prior knowledge utilization for fluorescence analysis

Chemometrics and Intelligent Laboratory Systems(2023)

引用 1|浏览9
暂无评分
摘要
Linear regression is a dominant estimation technique in chemometrics, where there is a need for inexpensive and reliable sensors for water monitoring. However, most problems are nonlinear, such as the estimation of concentration in solution from an emitted fluorescence spectrum (EFS). Even if an estimation method gives desirable results, at some point it will be used under field conditions, where poor signal quality and less control over environmental effects are expected, leading to poor performance. In this study, we overcome these problems by implementing deep neural network (DNN) models and transfer learning technique for EFS analysis. The proposed models, R (Regression module) and ER (Encoder-Regression), outperformed linear methods and a naive DNN approach for high-quality laboratory-sampled data with a maximum mean relative error of ∼11%, vs. a minimum mean relative error of 184% for the linear methods. In the case of low-quality data, which were simulated based on a real-use case, the lowest error of the linear methods climbed to 263%, whereas the proposed ER model error remained at 9%. At low concentrations, ER gave the best results for all datasets: ∼3.46 ppb in the high-quality datasets, and 2.4 ppb in the low-quality datasets.
更多
查看译文
关键词
Deep learning,Organic contamination,Regression,Transfer learning,Water quality,Chemometrics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要