Improving large language models for clinical named entity recognition via prompt engineering

Yan Hu, Qingyu Chen, Jingcheng Du, Xueqing Peng, Vipina Kuttichi Keloth,Xu Zuo,Yujia Zhou, Zehan Li,Xiaoqian Jiang, Zhiyong Lu, Kirk Roberts,Hua Xu

JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION(2024)

引用 20|浏览107
暂无评分
摘要
Importance: The study highlights the potential of large language models, specifically GPT-3.5 and GPT-4, in processing complex clinical data and extracting meaningful information with minimal training data. By developing and refining prompt-based strategies, we can significantly enhance the models' performance, making them viable tools for clinical NER tasks and possibly reducing the reliance on extensive annotated datasets. Objectives: This study quantifies the capabilities of GPT-3.5 and GPT-4 for clinical named entity recognition (NER) tasks and proposes task-specific prompts to improve their performance. Materials and Methods: We evaluated these models on 2 clinical NER tasks: (1) to extract medical problems, treatments, and tests from clinical notes in the MTSamples corpus, following the 2010 i2b2 concept extraction shared task, and (2) to identify nervous system disorder-related adverse events from safety reports in the vaccine adverse event reporting system (VAERS). To improve the GPT models' performance, we developed a clinical task-specific prompt framework that includes (1) baseline prompts with task description and format specification, (2) annotation guideline-based prompts, (3) error analysis-based instructions, and (4) annotated samples for few-shot learning. We assessed each prompt's effectiveness and compared the models to BioClinicalBERT. Results: Using baseline prompts, GPT-3.5 and GPT-4 achieved relaxed F1 scores of 0.634, 0.804 for MTSamples and 0.301, 0.593 for VAERS. Additional prompt components consistently improved model performance. When all 4 components were used, GPT-3.5 and GPT-4 achieved relaxed F1 socres of 0.794, 0.861 for MTSamples and 0.676, 0.736 for VAERS, demonstrating the effectiveness of our prompt framework. Although these results trail BioClinicalBERT (F1 of 0.901 for the MTSamples dataset and 0.802 for the VAERS), it is very promising considering few training samples are needed. Discussion: The study's findings suggest a promising direction in leveraging LLMs for clinical NER tasks. However, while the performance of GPT models improved with task-specific prompts, there's a need for further development and refinement. LLMs like GPT-4 show potential in achieving close performance to state-of-the-art models like BioClinicalBERT, but they still require careful prompt engineering and understanding of task-specific knowledge. The study also underscores the importance of evaluation schemas that accurately reflect the capabilities and performance of LLMs in clinical settings. Conclusion: While direct application of GPT models to clinical NER tasks falls short of optimal performance, our task-specific prompt framework, incorporating medical knowledge and training samples, significantly enhances GPT models' feasibility for potential clinical applications.
更多
查看译文
关键词
prompt engineering,large language models,clinical named entity recognition,GPT-3.5,GPT-4
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要