Theoretical Study of Hydroxylation of alpha- and beta-Pinene by a Cytochrome P450 Monooxygenase Model

International journal of molecular sciences(2023)

引用 0|浏览9
暂无评分
摘要
Previous studies on biocatalytic transformations of pinenes by cytochrome P450 (CYP) enzymes reveal the formation of different oxygenated products from a single substrate due to the multistate reactivity of CYP and the many reactive sites in the pinene scaffold. Up until now, the detailed mechanism of these biocatalytic transformations of pinenes have not been reported. Hereby, we report a systematic theoretical study of the plausible hydrogen abstraction and hydroxylation reactions of alpha- and beta-pinenes by CYP using the density functional theory (DFT) method. All DFT calculations in this study were based on B3LYP/LAN computational methodology using the Gaussian09 software. We used the B3LYP functional with corrections for dispersive forces, BSSE, and anharmonicity to study the mechanism and thermodynamic properties of these reactions using a bare model (without CYP) and a pinene-CYP model. According to the potential energy surface and Boltzmann distribution for radical conformers, the major reaction products of CYP-catalyzed hydrogen abstraction from beta-pinene are the doublet trans (53.4%) and doublet cis (46.1%) radical conformer at delta site. The formation of doublet cis/trans hydroxylated products released a total Gibbs free energy of about 48 kcal/mol. As for alpha pinene, the most stable radicals were trans-doublet (86.4%) and cis-doublet (13.6%) at epsilon sites, and their hydroxylation products released a total of similar to 50 kcal/mol Gibbs free energy. Our results highlight the likely C-H abstraction and oxygen rebounding sites accounting for the multi-state of CYP (doublet, quartet, and sextet spin states) and the formation of different conformers due to the presence of cis/trans allylic hydrogen in alpha-pinene and beta-pinene molecules.
更多
查看译文
关键词
CYP,DFT,catalysis,hydroxylation,modelling,pinene
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要