谷歌浏览器插件
订阅小程序
在清言上使用

Adsorption Characterization of Lactobacillus Sp. for Di-(2-ethylhexyl) Phthalate.

PROBIOTICS AND ANTIMICROBIAL PROTEINS(2024)

引用 0|浏览13
暂无评分
摘要
Di-(2-ethylhexyl) phthalate (DEHP) is the widely detected plasticizer in foods whose exposure is associated with a myriad of human disorders. The present study focused on identifying Lactobacillus strains with high adsorption potential towards DEHP and further elucidating the mechanism of binding using HPLC, FTIR and SEM. Two strains, Lactobacillus rhamnosus GG and Lactobacillus plantarum MTCC 25,433, were found to rapidly adsorb more than 85% of DEHP in 2 h. Binding potential remained unaffected by heat treatment. Moreover, acid pre-treatment enhanced the DEHP adsorption. Chemical pre-treatments, such as NaIO4, pronase E or lipase, caused reduction in DEHP adsorption to 46% (LGG), 49% (MTCC 25,433) and 62% (MTCC 25,433), respectively, attributing it to cell wall polysaccharides, proteins and lipids. This was also corroborated by stretching vibrations of C = O, N-H, C-N and C-O functional groups. Furthermore, SDS and urea pre-treatment, demonstrated the crucial role of hydrophobic interactions in DEHP adsorption. The extracted peptidoglycan from LGG and MTCC 25,433 adsorbed 45% and 68% of DEHP, respectively, revealing the imperative role of peptidoglycan and its integrity in DEHP adsorption. These findings indicated that DEHP removal was based on physico-chemical adsorption and cell wall proteins, polysaccharides or peptidoglycan played a primary role in its adsorption. Owing to the high binding efficiency, L. rhamnosus GG and L. plantarum MTCC 25,433 were considered to be a potential detoxification strategy to mitigate the risk associated with the consumption of DEHP-contaminated foods.
更多
查看译文
关键词
Phthalates
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要